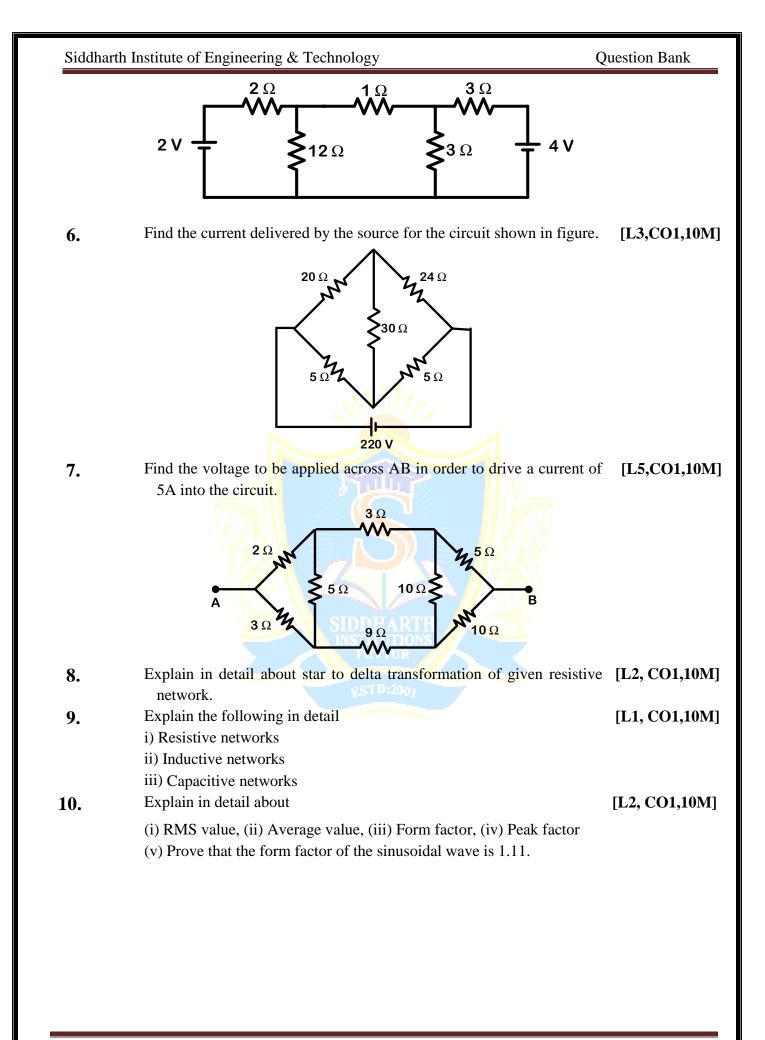
Kirchoff's laws.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR (AUTONOMOUS)

(Approved by AICTE, New Delhi & Affiliated to JNTUA, Ananthapuramu) (Accredited by NBA & Accredited by NAAC with 'A' Grade) (An ISO 9001:2008 Certified Institution) Siddharth Nagar, Narayavanam Road, PUTTUR-517 583

QUESTION BANK

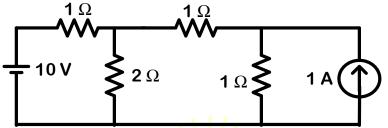

Subject with Code: BE&ME (19ME0345) Year/ Sem : II-B. Tech & I-Sem

Course & Branch: B. Tech-CE Regulation : R19

PART-A UNIT I (CO1) INTRODUCTION TO ELECTRICAL ENGINEERING

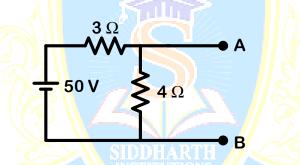
- State and explain Ohm's law. [L1, CO1,5M] 1. a b Explain in detail about passive elements. [L1, CO1,5M] Three resistances of values 20, 30 and 50 are connected in series across 2. [L5,CO1,10M] 20 V DC supply. Calculate, i) Equivalent resistance of the circuit. ii) Total current from the supply. iii) Voltage drop across each resistor. iv) Power dissipated in each resistor. Explain about the Star-Delta and Delta-Star transformation [L2, CO1,10M] 3. State and prove Kirchhoff's laws with suitable examples. [L2,CO1,5M] 4. a b Find i_1 , i_2 , i_3 for the given circuit by using Kirchhoff's laws? [L4, CO1, 5M] 2Ω 7 V 1Ω Find the current through 12Ω resistor for the given circuit using
- 5.

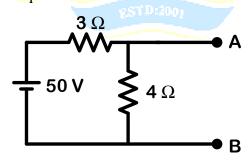
[L3, CO1,8M]



Basic Electrical & Mechanical Engineering

UNIT II (CO2) NETWORK THEOREMS & TWO PORT NETWORKS


- **1. a**) State Super position theorem
 - b) Calculate the current in 2Ω resistor in the given circuit using super position theorem.


2. a) State Thevenin's theorem

3.

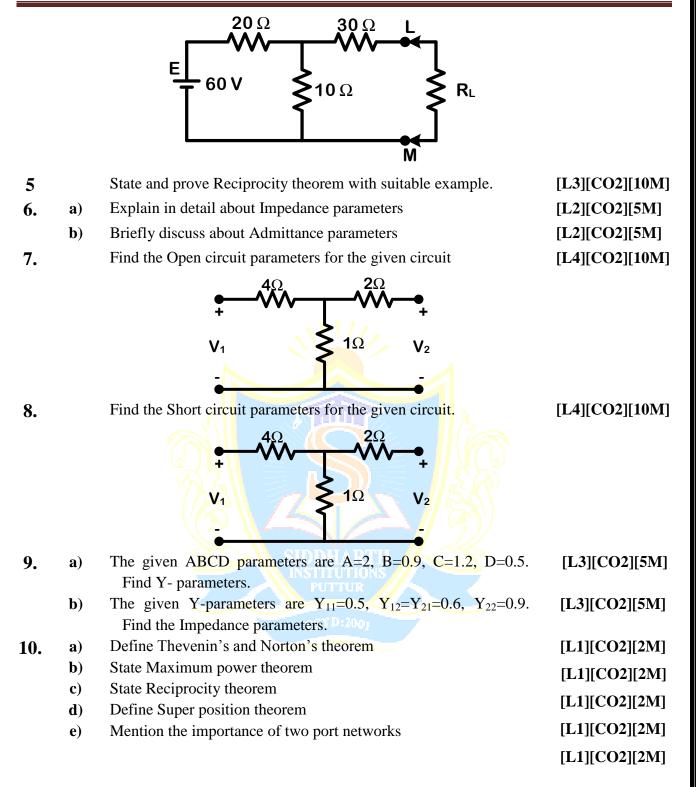
b) Find the Thevenin's equivalent circuit across AB for the circuit [] shown.

a) State Norton's theorem. INSTITUTIONS [L1,CO2,2M]
b) Find Norton's equivalent circuit across AB for the circuit shown. [L3,CO2,8M]

4. Determine the maximum power delivered to the load resistance [L3,CO2,10M] R_L

Question Bank

[L1,CO2,2M]


[L1,CO2,2M]

[L3,CO2,8M]

Siddharth Institute of Engineering & Technology

Question Bank

UNIT III (CO3)

DC MOTORS & TRANSFORMERS

1.	a)	Discuss about the principle of operation of DC motors	[L5,CO3,5M]
	b)	Calculate the value of torque established by the armature of a 4-	[L5,CO3,5M]
		pole DC motor having 774 conductors, 2 paths in parallel,	
		24mwb flux per pole when the total armature current is 50A.	
2.		A 220V shunt motor takes a total current of 80A and runs at 800	[L5,CO3,10M]
		r.p.m. Shunt field resistance and armature resistance are 50Ω and	
		0.1Ω , respectively. If iron and friction losses amount to 1600W.	
		Find (i) Copper losses (ii) Armature torque (iii) Shaft torque	
		(iv) Efficiency.	
3.	a)	Derive Torque equation of dc motor.	[L3, CO3,5M]
	b)	The counter emf of Shunt motor is 227 V. The field resistance is	[L5, CO3,5M]
		160 Ω and field current 1.5A. If the line current is 36.5A, find the	
		armature resistance also find armature current when the motor is	
		stationary.	
4.	a)	Explain about constructional details of dc motor.	[L2, CO3,5M]
	b)	A 6 pole lap wound shunt motor has 500 conductors, the armature	[L5, CO3,5M]
		and shunt field resistances are 0.05 Ω and 25 Ω , respectively.	
		Find the speed of the motor if it takes 120 A from dc supply of	
		100 V. Flux per pole is 20 mWb.	
5		Briefly discuss about various types of DC motors with neat sketches.	[L1,CO3,10M]
6.	a)	Derive EMF equation of a transformer	[L3, CO3,6M]
	b)	A 100 kVA, 11000/400 V, 50 Hz transformer has 40 secondary	[L4, CO3,4M]
		turns. Calculate the number of primary turns and primary and	
		secondary currents.	
7.	a)	Explain constructional details of transformer.	[L2, CO3,6M]
	b)	A 20 kVA, 2000/200 V, 50 Hz transformer has 66 secondary turns.	[L4, CO3,4M]
		Calculate the number of primary turns and primary and	
		secondary currents. Neglect losses.	
8.		Explain in detail about various transformer losses.	[L2,CO3,10M]
9.	a) L)	Derive the condition for maximum efficiency of the transformer.	[L3, CO3,5M]
	b)	Discuss about the voltage regulation of the transformer.	[L3, CO3,5M]

Basic Electrical & Mechanical Engineering

Siddh	arth Ir	nstitute of Engineering & Technology	Question Bank
10.	a)	Enumerate the types of DC motors.	[L1, CO3,2M]
	b)	List the application of DC motors.	[L1, CO3, 2M]
	c)	Write the expression for transformer ration in terms voltage, current and turns	[L5, CO3, 2M]
	d)	What is working principle of transformer?	
	e)	Enumerate the various losses associated with transformer.	[L1, CO3, 2M]
			[L1, CO3, 2M]

PART B

UNIT IV (CO4)

1	(a)	Define manufacturing process? Classify the various manufacturing processes.	L2	CO4	5M
	(b)	Illustrate the importance of manufacturing process towards technology and social-economic development?	L2	CO4	5M
2		Describe the defects in casting and prevents.	L2	CO4	10M
3	(a)	List the various advantages and applications of casting?	L2	CO4	5M
	(b)	What is pattern? Explain various pattern materials are used to making pattern.	L2	CO4	5M
4	(a)	Sketch and explain different types of patterns are used in foundry.	L2	CO4	5M
	(b)	What are the different pattern allowances? Explain with neat sketch.	L2	CO4	5M
5		Draw a sketch of gating system and explain the functions of various elements? Explain the types of gating systems with neat diagram.	L4	CO4	10M
6		Briefly explain any two types of casting process with neat sketch and mention the advantages and limitations.	L2	CO4	10M
7		What is mean by welding? Explain the working of gas welding with neat sketch and mention the advantages, limitations and applications.	L2	CO4	10M
8	(a)	Explain below with neat sketches(a) Soldering(b)Brazing(d) Adhesive bonding	L2	CO4	10M
9	(a)	What is core? How do you classify the cores?	L1	CO4	5M
	(b)	Explain the molding steps with neat sketch?	L2	CO4	5M
10		Classify the welding types? Explain the working of arc welding with neat sketch and mention the advantages, limitations and applications.	L4	CO4	10M

UNIT V (CO5)

1		What is machine tool? Explain Working and Auxiliary motions in machine	L2	CO5	10M
		tools.			
2		Define the working principle of lathe? Draw the layout of lathe and write	L2	CO5	10M
		the specification lathe.			
3		Write a short notes on (a) Kinematics of machine tool (b) Motion	L3	CO5	10M
		transmission (c)Automatic lathe			
4	(a)	Name the different types of the lathes?	L1	CO5	5M

Basic Electrical & Mechanical Engineering

Siddharth Institute of Engineering & Technology Q		Question Bank			
	(b)	Write the different types of lathe operations?	L1	CO5	5M
5	(a)	Explain accessories of lathe machine.	L1	CO5	5M
	(b)	What are the differences between a Turret and a Capstan lathe?	L4	CO5	5M
6		What is a shaper? Draw the block diagram of a shaper machine with principal parts and specifications.	L2	CO5	10M
7		Explain the slotting and planning machine with block diagram with specifications.	L2	CO5	10M
8	(a)	Illustrate the working principle of a drilling and boring machine with principle parts?	L2	CO5	5M
	(b)	Explain the principle features of milling machine?	L2	CO5	5M
9	(a)	Define indexing? Explain any two indexing methods with suitable example.	L2	CO5	5M
	(b)	Describe the working principle of a grinding machine with principle parts? What are the grinding wheel parameters that influence the grinding performance?		CO5	5M
10	(a)	What is planer? Explain any one type of planer mechanism.	L2	CO5	5M
	(b)	Explain about	L2	CO5	5M
		(a) CNC machine (b) Programming			

UNIT VI (CO6)

1	What is Automobile? Draw the layout of automobile and discuss the	12	C06	10M
1	functions of the automobile basic components.	122	000	10101
2	Explain the chasis construction with the help of suitable diagrams? Make a	L2	CO6	10M
	list of various components mounted on the chasis.			
3	Explain below with neat sketches	L2	CO6	10M
	a) rear wheel drive Putture b) front wheel drive			
4	What is the role of engine in automobile? Write the classification of	L2	CO6	10M
	automobile engines?			
5	Role of systems in automobile? List the various systems in automobile?	L1	CO6	10M
6	What is meant by vapour compression refrigeration system? Explain its	L2	CO6	10M
	working with neat diagram			
7	Explain about	L2	CO6	10M
	(a) Heat Pump (b) COP (c) Energy Efficiency Rating			
8	Examine the working of house hold refrigerator with line diagram.	L2	CO6	10M
9	Define psychometry and explain their properties.	L2	CO6	10M
10	Discuss the psychometric process.	L6	CO6	10M

Prepared By P CHANDRA SEKHAR & P RAMESH